CONTENTS

Title		page
ABOUT LAYERTEC / ABOUT TI	HIS CATALOG	02
CONTINUOUS WAVE AND N	IANOSECOND LASER OPTICS	03
· Introduction to continuous way		03
· Components for F ₂ Lasers	e and nanesecond laser opiles	04
· Components for ArF Lasers		06
· Components for KrF, XeCl and	XeF lasers	08
· Components for Ti:Sapphire la		10
· Components for diode lasers		12
Broadband and scanning mirro	ors	14
	GW and Yb-doped fiber lasers	16
· High power Nd:YAG/Nd:YV0		18
	of Nd:YAG and Nd:YVO, lasers	20
· Components for other Nd:YAC		22
· Components for Ho:YAG and		24
· Components for Er:YAG lasers		26
· Components for optical param	· •	28
Components for optical param	enrear esemaiors (er es _j	
PICOSECOND LASER OPTICS		30
FEMTOSECOND LASER OPTIC	CS	32
· Introduction to femtosecond las	ser optics	32
· Femtosecond laser optics for Ti	:Sapphire and related lasers	34
 Standard femtosecond laser 		34
- Broadband femtosecond lase		36
	d laser optics (bandwidth ~1octave)	38
- Silver mirrors for femtosecon		40
· Femtosecond laser optics optin	<u>'</u>	42
· High power femtosecond laser	<u>'</u>	44
	damage thresholds of fs laser optics	45
· Components for the second ha	••	46
· Components for higher harmon	• • • • • • • • • • • • • • • • • • • •	48
· Gires-Tournois-Interferometer (C	•	50
· Optics for temtosecond lasers	in the 1100–1600nm wavelength range	52

CONTENTS

Title	page
FILTERS FOR LASER APPLICATIONS	54
LOW LOSS OPTICAL COMPONENTS	56
COATINGS ON CRYSTAL OPTICS	58
A FTALLIC CO ATIN LOS	/ 0
METALLIC COATINGS	60
· Front surface silver mirrors	60
· Front surface aluminum mirrors	62
· Special metallic coatings	64
SUBSTRATES	66
· High quality fused silica and CaF ₂ components	66
· Substrate materials for UV, VIS and NIR/IR optics	68
· Transmission curves	69
· Standard substrates	70
· Prices	71
REGISTER	72

STEEP EDGE FILTERS

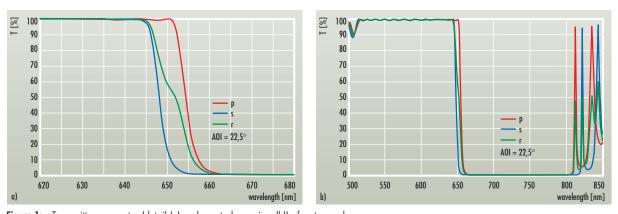


Figure 1: Transmittance spectra (detail (a) and spectral overview (b)) of a steep edge short wavelength pass filter for use as combiner for laser diodes at 635nm and 670nm (HRr (22.5°, 670nm) > 99.9% + HTr (22.5°, 635nm) > 98%, rear side AR coated)

For more information on combiners for diode lasers see pages 12-13.

For steep egde filters used as pump mirrors for solid state lasers on the basis of Yb-doped materials (e.g. Yb:YAG, Yb:KGW, Yb-doped fibers) see pages 16–17.

VARIABLE FILTERS FOR LASER APPLICATIONS

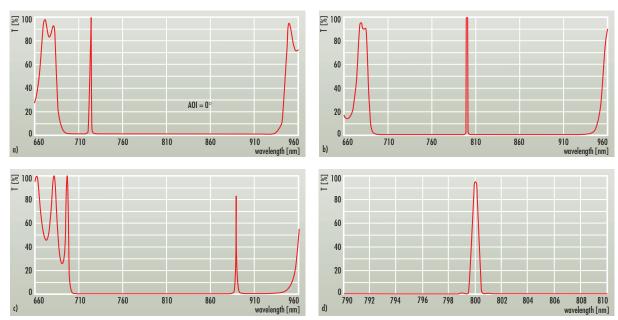


Figure 2: Transmittance spectra of a laterally variable filter for the wavelength range of the Ti:Sapphire laser taken on the short wavelength side (a), in the center (b, d) and on the long wavelength side (c) of the filter

Special features:

- · Linear variation of the filter wavelength with the position on the filter
- · Similar designs for the VIS range (400–700nm) and for the NIR range (up to 1800nm)
- Blocking: T < 10³, block band: ~200nm in the Ti-Sapphire range
- · Maximum transmittance: 90%, FWHM: 1nm
- · Shape: rectangular, size: 10 ... 20mm long, 5 ... 10mm broad

NARROWBAND REFLECTANCE FILTERS

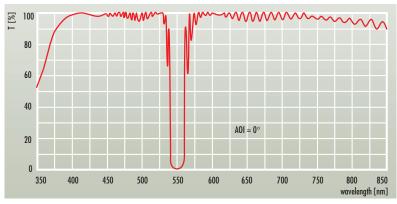


Figure 3: Transmittance spectrum of a narrowband reflectance filter for 550nm

Filters of this type are ideal for the blocking of a single laser line while preserving a high and relatively constant transmission over the whole visible range.

Special features:

- Spectral width of the reflectance band: 3% (e.g. T < 1% from 543 559 nm)
- · T<0.1% at the center wavelength
- · T>90% troughout the visible spectral range

OEM PRODUCTION OF SPECIAL FILTERS FOR LASER APPLICATIONS

- Filters for laser applications require excellent spectral quality and high damage thresholds.
- Spectral position of cut on / cut off wavelengths or reflectance and transmittance bands according to customer specifications
- · Steep edge filters on laser crystals
- · Spectral tolerance 1% of centre wavelength
 - The spectral position of the edge may vary by 1% between the coating runs while the steepness of the egde remains unchanged. The spectral performance of the filter can be optimized by tilting the filter. Tilting results in a shift of the edge towards shorter wavelengths. Thus, the edge position of a filter with the edge at longer wavelengths than required can be adjusted for its best performance by angle tuning.
- Sizes and shapes:
 - Edge filters can be produced on round or rectangular substrates up to diameters of 38.1 mm (1.5 inch). Also the production of miniature size filters (e.g. $3 \times 3 \text{mm}^2$) is possible. Narrow band reflectance filters are limited to diameters of 25.4 mm (1 inch).
- High thermal and climatical stability

